Some Results on Conditionally Sequential Absorbing Maps in Multiplicative Metric Space

نویسندگان

چکیده

This paper aims to prove two general fixed point theorems in multiplicative metric space (MMS) by using reciprocally continuous mappings and conditionally sequential absorbing mappings. Further our outcomes are validated discussing appropriate examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE

‎In this work‎, ‎we investigate admitting center map on multiplicative metric space‎ ‎and establish some fixed point theorems for such maps‎. ‎We modify the Banach contraction principle and‎ ‎the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some‎ ‎useful theorems‎. ‎Our results on multiplicative metric space improve and modify‎ ‎s...

متن کامل

Some results on weakly contractive maps

In this paper direct proofs of some common fixed point results for two and three mappings under weak contractive conditions are given. Some of these results are improved by using different arguments of control functions. Examples are presented showing that some generalizations cannot be obtained and also that our results are distinct from the existing ones.

متن کامل

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

Some Results on Metric Trees

Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T , d) is a metric space such that between any two of its points there is an unique arc that is isometric to an interval in R. We begin our investigation by examining isometric embeddings of metric trees into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Analysis and Applications

سال: 2023

ISSN: ['2291-8639']

DOI: https://doi.org/10.28924/2291-8639-21-2023-13